Notation

\(\mathbb{N} \) The set of all natural numbers \(\{1,2,3,\ldots\} \)

\(\mathbb{Z} \) The set of all integers

\(\mathbb{Q} \) The set of all rational numbers

\(\mathbb{R} \) The set of all real numbers

\(S_n \) The group of permutations of \(n \) distinct symbols

\(\mathbb{Z}_n \) \(\{0,1,2,\ldots,n-1\} \) with addition and multiplication modulo \(n \)

\(\emptyset \) empty set

\(A^T \) Transpose of \(A \)

\(i = \sqrt{-1} \)

\(\hat{i}, \hat{j}, \hat{k} \) unit vectors having the directions of the positive \(x, y \) and \(z \) axes of a three dimensional rectangular coordinate system

\(\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \)

\(I_n \) Identity matrix of order \(n \)

\(\ln \) logarithm with base \(e \)
SECTION – A
MULTIPLE CHOICE QUESTIONS (MCQ)

Q. 1 – Q.10 carry one mark each.

Q.1 The sequence $\{s_n\}$ of real numbers given by

$$s_n = \frac{\sin \frac{\pi}{2}}{1 \cdot 2} + \frac{\sin \frac{\pi}{2^2}}{2 \cdot 3} + \cdots + \frac{\sin \frac{\pi}{2^n}}{n \cdot (n + 1)}$$

is

(A) a divergent sequence
(B) an oscillatory sequence
(C) not a Cauchy sequence
(D) a Cauchy sequence

Q.2 Let P be the vector space (over \mathbb{R}) of all polynomials of degree ≤ 3 with real coefficients. Consider the linear transformation $T: P \to P$ defined by

$$T(a_0 + a_1x + a_2x^2 + a_3 x^3) = a_3 + a_2x + a_1x^2 + a_0 x^3.$$

Then the matrix representation M of T with respect to the ordered basis $\{1, x, x^2, x^3\}$ satisfies

(A) $M^2 + I_4 = 0$
(B) $M^2 - I_4 = 0$
(C) $M - I_4 = 0$
(D) $M + I_4 = 0$

Q.3 Let $f: [-1, 1] \to \mathbb{R}$ be a continuous function. Then the integral

$$\int_0^\pi x f(\sin x) \, dx$$

is equivalent to

(A) $\frac{\pi}{2} \int_0^\pi f(\sin x) \, dx$
(B) $\frac{\pi}{2} \int_0^\pi f(\cos x) \, dx$
(C) $\pi \int_0^\pi f(\sin x) \, dx$
(D) $\pi \int_0^\pi f(\cos x) \, dx$

Q.4 Let σ be an element of the permutation group S_5. Then the maximum possible order of σ is

(A) 5
(B) 6
(C) 10
(D) 15

Q.5 Let f be a strictly monotonic continuous real valued function defined on $[a, b]$ such that $f(a) < a$ and $f(b) > b$. Then which one of the following is TRUE?

(A) There exists exactly one $c \in (a, b)$ such that $f(c) = c$
(B) There exist exactly two points $c_1, c_2 \in (a, b)$ such that $f(c_i) = c_i, \ i = 1, 2$
(C) There exists no $c \in (a, b)$ such that $f(c) = c$
(D) There exist infinitely many points $c \in (a, b)$ such that $f(c) = c$
Q.6 The value of \(\lim_{(x, y) \to (2, -2)} \frac{\sqrt{(x-y)^2}}{x-y-4} \) is

(A) 0
(B) \(\frac{1}{4} \)
(C) \(\frac{1}{3} \)
(D) \(\frac{1}{2} \)

Q.7 Let \(\mathbf{r} = (x \mathbf{i} + y \mathbf{j} + z \mathbf{k}) \) and \(r = |\mathbf{r}| \). If \(f(r) = \ln r \) and \(g(r) = \frac{1}{r}, r \neq 0 \), satisfy

\(2 \nabla f + h(r) \nabla g = \mathbf{0} \), then \(h(r) \) is

(A) \(r \)
(B) \(\frac{1}{r} \)
(C) \(2r \)
(D) \(\frac{2}{r} \)

Q.8 The nonzero value of \(n \) for which the differential equation

\[(3xy^2 + n^2x^2y)dx + (nx^3 + 3x^2y)dy = 0, \quad x \neq 0, \]

becomes exact is

(A) \(-3\)
(B) \(-2\)
(C) \(2\)
(D) \(3\)

Q.9 One of the points which lies on the solution curve of the differential equation

\[(y - x)dx + (x + y)dy = 0, \]

with the given condition \(y(0) = 1 \), is

(A) \((1, -2)\)
(B) \((2, -1)\)
(C) \((2, 1)\)
(D) \((-1, 2)\)

Q.10 Let \(S \) be a closed subset of \(\mathbb{R} \), \(T \) a compact subset of \(\mathbb{R} \) such that \(S \cap T \neq \emptyset \). Then \(S \cap T \) is

(A) closed but not compact
(B) not closed
(C) compact
(D) neither closed nor compact

Q.11 – Q.30 carry two marks each.

Q.11 Let \(S \) be the series

\[\sum_{k=1}^{\infty} \frac{1}{(2k-1)2^{(2k-1)}} \]

and \(T \) be the series

\[\sum_{k=2}^{\infty} \frac{\left(3k-4\right)^{\frac{k+1}{3}}}{3k+2} \]

of real numbers. Then which one of the following is TRUE?

(A) Both the series \(S \) and \(T \) are convergent
(B) \(S \) is convergent and \(T \) is divergent
(C) \(S \) is divergent and \(T \) is convergent
(D) Both the series \(S \) and \(T \) are divergent
Q.12 Let \(\{a_n\} \) be a sequence of positive real numbers satisfying

\[
\frac{4}{a_{n+1}} = \frac{3}{a_n} + \frac{a_n^3}{81}, \quad n \geq 1, \quad a_1 = 1.
\]

Then all the terms of the sequence lie in

(A) \(\left[\frac{1}{2}, \frac{3}{2} \right] \) \quad (B) \([0, 1] \) \quad (C) \([1, 2] \) \quad (D) \([1, 3] \)

Q.13 The largest eigenvalue of the matrix

\[
\begin{pmatrix}
1 & 4 & 16 \\
4 & 16 & 1 \\
16 & 1 & 4
\end{pmatrix}
\]

is

(A) 16 \quad (B) 21 \quad (C) 48 \quad (D) 64

Q.14 The value of the integral

\[
\frac{(2n)!}{2^{2n} (n!)^2} \int_{-1}^{1} (1 - x^2)^n \, dx, \quad n \in \mathbb{N}
\]

is

(A) \(\frac{2}{(2n+1)!} \) \quad (B) \(\frac{2n}{(2n+1)!} \) \quad (C) \(\frac{2(n!)}{2n+1} \) \quad (D) \(\frac{(n+1)!}{2n+1} \)

Q.15 If the triple integral over the region bounded by the planes

\[
2x + y + z = 4, \quad x = 0, \quad y = 0, \quad z = 0
\]

is given by

\[
\int_{0}^{2} \int_{0}^{\lambda(x)} \int_{0}^{\mu(x,y)} \, dz \, dy \, dx,
\]

then the function \(\lambda(x) - \mu(x, y) \) is

(A) \(x + y \) \quad (B) \(x - y \) \quad (C) \(x \) \quad (D) \(y \)

Q.16 The surface area of the portion of the plane \(y + 2z = 2 \) within the cylinder \(x^2 + y^2 = 3 \) is

(A) \(\frac{3\sqrt{5}}{2} \pi \) \quad (B) \(\frac{5\sqrt{5}}{2} \pi \) \quad (C) \(\frac{7\sqrt{5}}{2} \pi \) \quad (D) \(\frac{9\sqrt{5}}{2} \pi \)
Q.17 Let \(f: \mathbb{R}^2 \rightarrow \mathbb{R} \) be defined by
\[
 f(x, y) = \begin{cases}
 \frac{xy^2}{x+y} & \text{if } x+y \neq 0 \\
 0 & \text{if } x+y = 0
\end{cases}
\]
Then the value of \(\left(\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y \partial x} \right) \) at the point \((0, 0)\) is
(A) 0 (B) 1 (C) 2 (D) 4

Q.18 The function \(f(x, y) = 3x^2y + 4y^3 - 3x^2 - 12y^2 + 1 \) has a saddle point at
(A) \((0, 0)\) (B) \((0, 2)\) (C) \((1, 1)\) (D) \((-2, 1)\)

Q.19 Consider the vector field \(\vec{F} = r^\beta (y \hat{i} - x \hat{j}) \), where \(\beta \in \mathbb{R} \), \(\vec{r} = xi + yj \) and \(r = |\vec{r}| \). If the absolute value of the line integral \(\oint_C \vec{F} \cdot d\vec{r} \) along the closed curve \(C: x^2 + y^2 = a^2 \) (oriented counter clockwise) is \(2\pi \), then \(\beta \) is
(A) \(-2\) (B) \(-1\) (C) \(1\) (D) \(2\)

Q.20 Let \(S \) be the surface of the cone \(z = \sqrt{x^2 + y^2} \) bounded by the planes \(z = 0 \) and \(z = 3 \). Further, let \(C \) be the closed curve forming the boundary of the surface \(S \). A vector field \(\vec{F} \) is such that \(\nabla \times \vec{F} = -xi - yj \). The absolute value of the line integral \(\oint_C \vec{F} \cdot d\vec{r} \), where \(\vec{r} = xi + yj + zk \) and \(r = |\vec{r}| \), is
(A) 0 (B) \(9\pi\) (C) \(15\pi\) (D) \(18\pi\)

Q.21 Let \(y(x) \) be the solution of the differential equation
\[
\frac{d}{dx} \left(x \frac{dy}{dx} \right) = x; \quad y(1) = 0, \quad \left. \frac{dy}{dx} \right|_{x=1} = 0
\]
Then \(y(2) \) is
(A) \(\frac{3}{4} + \frac{1}{2} \ln 2\) (B) \(\frac{3}{4} - \frac{1}{2} \ln 2\)
(C) \(\frac{3}{4} + \ln 2\) (D) \(\frac{3}{4} - \ln 2\)

Q.22 The general solution of the differential equation with constant coefficients
\[
\frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = 0
\]
approaches zero as \(x \to \infty \), if
(A) \(b \) is negative and \(c \) is positive
(B) \(b \) is positive and \(c \) is negative
(C) both \(b \) and \(c \) are positive
(D) both \(b \) and \(c \) are negative
Q.23 Let $S \subseteq \mathbb{R}$ and ∂S denote the set of points x in \mathbb{R} such that every neighbourhood of x contains some points of S as well as some points of complement of S. Further, let \bar{S} denote the closure of S. Then which one of the following is FALSE?

(A) $\partial \mathbb{Q} = \mathbb{R}$
(B) $\partial (\mathbb{R} \setminus T) = \partial T$, $T \subset \mathbb{R}$
(C) $\partial (T \cup V) = \partial T \cup \partial V$, $T, V \subset \mathbb{R}$, $T \cap V \neq \emptyset$
(D) $\partial T = T \cap (\mathbb{R} \setminus \bar{T})$, $T \subset \mathbb{R}$

Q.24 The sum of the series

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 + n - 2}$$

is

(A) $\frac{1}{3} \ln 2 - \frac{5}{18}$
(B) $\frac{1}{3} \ln 2 - \frac{5}{6}$
(C) $\frac{2}{3} \ln 2 - \frac{5}{18}$
(D) $\frac{2}{3} \ln 2 - \frac{5}{6}$

Q.25 Let $f(x) = \frac{1}{1+|x|} + \frac{1}{1+|x-1|}$ for all $x \in [-1, 1]$. Then which one of the following is TRUE?

(A) Maximum value of $f(x)$ is $\frac{3}{2}$
(B) Minimum value of $f(x)$ is $\frac{1}{3}$
(C) Maximum of $f(x)$ occurs at $x = \frac{1}{2}$
(D) Minimum of $f(x)$ occurs at $x = 1$

Q.26 The matrix $M = \begin{bmatrix} \cos \alpha & \sin \alpha \\ i \sin \alpha & i \cos \alpha \end{bmatrix}$ is a unitary matrix when α is

(A) $(2n + 1)\frac{\pi}{2}$, $n \in \mathbb{Z}$
(B) $(3n + 1)\frac{\pi}{3}$, $n \in \mathbb{Z}$
(C) $(4n + 1)\frac{\pi}{4}$, $n \in \mathbb{Z}$
(D) $(5n + 1)\frac{\pi}{5}$, $n \in \mathbb{Z}$

Q.27 Let $M = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & \alpha \\ 2 & -\alpha & 0 \end{bmatrix}$, $\alpha \in \mathbb{R} \setminus \{0\}$ and b a non-zero vector such that $Mx = b$ for some $x \in \mathbb{R}^3$. Then the value of x^Tb is

(A) $-\alpha$
(B) α
(C) 0
(D) 1

Q.28 The number of group homomorphisms from the cyclic group \mathbb{Z}_4 to the cyclic group \mathbb{Z}_7 is

(A) 7
(B) 3
(C) 2
(D) 1

Q.29 In the permutation group S_n ($n \geq 5$), if H is the smallest subgroup containing all the 3-cycles, then which one of the following is TRUE?

(A) Order of H is 2
(B) Index of H in S_n is 2
(C) H is abelian
(D) $H = S_n$
Q.30 Let \(f: \mathbb{R} \to \mathbb{R} \) be defined as
\[
f(x) = \begin{cases}
 x(1 + x^\alpha \sin(\ln x^2)) & \text{if } x \neq 0 \\
 0 & \text{if } x = 0.
\end{cases}
\]

Then, at \(x = 0 \), the function \(f \) is

(A) continuous and differentiable when \(\alpha = 0 \)
(B) continuous and differentiable when \(\alpha > 0 \)
(C) continuous and differentiable when \(-1 < \alpha < 0\)
(D) continuous and differentiable when \(\alpha < -1 \)

SECTION - B
MULTIPLE SELECT QUESTIONS (MSQ)

Q.31 – Q.40 carry two marks each.

Q.31 Let \(\{s_n\} \) be a sequence of positive real numbers satisfying
\[
2 s_{n+1} = s_n^2 + \frac{3}{4}, \quad n \geq 1.
\]

If \(\alpha \) and \(\beta \) are the roots of the equation \(x^2 - 2x + \frac{3}{4} = 0 \) and \(\alpha < s_1 < \beta \), then which of the following statement(s) is(are) TRUE?

(A) \(\{s_n\} \) is monotonically decreasing
(B) \(\{s_n\} \) is monotonically increasing
(C) \(\lim_{n \to \infty} s_n = \alpha \)
(D) \(\lim_{n \to \infty} s_n = \beta \)

Q.32 The value(s) of the integral
\[
\int_{-\pi}^{\pi} |x| \cos nx \, dx, \quad n \geq 1
\]
is (are)

(A) 0 when \(n \) is even
(B) 0 when \(n \) is odd
(C) \(-\frac{4}{n^2}\) when \(n \) is even
(D) \(-\frac{4}{n^2}\) when \(n \) is odd
Q.33 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x, y) = \begin{cases} \frac{xy}{|x|} & \text{if } x \neq 0 \\ 0 & \text{elsewhere} \end{cases}.$$

Then at the point $(0, 0)$, which of the following statement(s) is(are) TRUE?

(A) f is not continuous
(B) f is continuous
(C) f is differentiable
(D) Both first order partial derivatives of f exist

Q.34 Consider the vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$ on an open connected set $S \subset \mathbb{R}^2$. Then which of the following statement(s) is(are) TRUE?

(A) Divergence of \mathbf{F} is zero on S
(B) The line integral of \mathbf{F} is independent of path in S
(C) \mathbf{F} can be expressed as a gradient of a scalar function on S
(D) The line integral of \mathbf{F} is zero around any piecewise smooth closed path in S

Q.35 Consider the differential equation

$$\sin 2x \frac{dy}{dx} = 2y + 2 \cos x, \quad y\left(\frac{\pi}{4}\right) = 1 - \sqrt{2}.$$

Then which of the following statement(s) is(are) TRUE?

(A) The solution is unbounded when $x \to 0$
(B) The solution is unbounded when $x \to \frac{\pi}{2}$
(C) The solution is bounded when $x \to 0$
(D) The solution is bounded when $x \to \frac{\pi}{2}$

Q.36 Which of the following statement(s) is(are) TRUE?

(A) There exists a connected set in \mathbb{R} which is not compact
(B) Arbitrary union of closed intervals in \mathbb{R} need not be compact
(C) Arbitrary union of closed intervals in \mathbb{R} is always closed
(D) Every bounded infinite subset V of \mathbb{R} has a limit point in V itself

Q.37 Let $P(x) = \left(\frac{5}{13}\right)^x + \left(\frac{12}{13}\right)^x - 1$ for all $x \in \mathbb{R}$. Then which of the following statement(s) is(are) TRUE?

(A) The equation $P(x) = 0$ has exactly one solution in \mathbb{R}
(B) $P(x)$ is strictly increasing for all $x \in \mathbb{R}$
(C) The equation $P(x) = 0$ has exactly two solutions in \mathbb{R}
(D) $P(x)$ is strictly decreasing for all $x \in \mathbb{R}$
Q.38 Let G be a finite group and $o(G)$ denotes its order. Then which of the following statement(s) is(are) TRUE?

(A) G is abelian if $o(G) = pq$ where p and q are distinct primes
(B) G is abelian if every non identity element of G is of order 2
(C) G is abelian if the quotient group $\frac{G}{Z(G)}$ is cyclic, where $Z(G)$ is the center of G
(D) G is abelian if $o(G) = p^3$, where p is prime

Q.39 Consider the set $V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid ax + \beta y + z = \gamma, \, \alpha, \beta, \gamma \in \mathbb{R} \right\}$. For which of the following choice(s) the set V becomes a two dimensional subspace of \mathbb{R}^3 over \mathbb{R}?

(A) $\alpha = 0, \beta = 1, \gamma = 0$
(B) $\alpha = 0, \beta = 1, \gamma = 1$
(C) $\alpha = 1, \beta = 0, \gamma = 0$
(D) $\alpha = 1, \beta = 1, \gamma = 0$

Q.40 Let $S = \left\{ \frac{1}{(3^n)} + \frac{1}{7^n} \mid n, m \in \mathbb{N} \right\}$. Then which of the following statement(s) is(are) TRUE?

(A) S is closed
(B) S is not open
(C) S is connected
(D) 0 is a limit point of S

SECTION – C
NUMERICAL ANSWER TYPE (NAT)

Q. 41 – Q. 50 carry one mark each.

Q.41 Let $\{s_n\}$ be a sequence of real numbers given by

$$s_n = 2^{(-1)^n} \left(1 - \frac{1}{n}\right) \sin \frac{n\pi}{2}, \quad n \in \mathbb{N}.$$

Then the least upper bound of the sequence $\{s_n\}$ is ____________

Q.42 Let $\{s_k\}$ be a sequence of real numbers, where

$$s_k = k^{\alpha/k}, \quad k \geq 1, \quad \alpha > 0.$$

Then

$$\lim_{n \to \infty} \left(s_1 \cdot s_2 \cdots s_n \right)^{1/n}$$

is ____________
Q.43 Let \(\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \) be a non-zero vector and \(A = \frac{\mathbf{x} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}} \). Then the dimension of the vector space \(\{ \mathbf{y} \in \mathbb{R}^3 \mid A\mathbf{y} = \mathbf{0} \} \) over \(\mathbb{R} \) is ____________

Q.44 Let \(f \) be a real valued function defined by

\[
f(x, y) = 2 \ln \left(x^2 y^2 e^x \right), \quad x > 0, y > 0.
\]

Then the value of \(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \) at any point \((x, y)\), where \(x > 0, y > 0, \) is ____________

Q.45 Let \(\mathbf{F} = \sqrt{x} \hat{i} + (x + y^3) \hat{j} \) be a vector field for all \((x, y)\) with \(x \geq 0 \) and \(\mathbf{r} = xf \hat{i} + yf \hat{j} \). Then the value of the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \) from \((0, 0)\) to \((1, 1)\) along the path \(C: x = t^2, y = t^3, 0 \leq t \leq 1 \) is ____________

Q.46 If \(f: (-1, \infty) \to \mathbb{R} \) defined by \(f(x) = \frac{x}{1+x} \) is expressed as

\[
f(x) = \frac{2}{3} + \frac{1}{9} (x - 2) + \frac{c(x - 2)^2}{(1 + \xi)^3},
\]

where \(\xi \) lies between 2 and \(x \), then the value of \(c \) is ____________

Q.47 Let \(y_1(x), y_2(x) \) and \(y_3(x) \) be linearly independent solutions of the differential equation

\[
\frac{d^3y}{dx^3} - 6 \frac{d^2y}{dx^2} + 11 \frac{dy}{dx} - 6y = 0.
\]

If the Wronskian \(W(y_1, y_2, y_3) \) is of the form \(ke^{bx} \) for some constant \(k \), then the value of \(b \) is ____________

Q.48 The radius of convergence of the power series

\[
\sum_{n=1}^{\infty} \frac{(-4)^n}{n(n + 1)} (x + 2)^{2n}
\]

is ____________
Q.49 Let \(f: (0, \infty) \to \mathbb{R} \) be a continuous function such that
\[
\int_0^x f(t) \, dt = -2 + \frac{x^2}{2} + 4x \sin 2x + 2 \cos 2x.
\]
Then the value of \(\frac{1}{\pi} f\left(\frac{\pi}{4}\right) \) is __________.

Q.50 Let \(G \) be a cyclic group of order 12. Then the number of non-isomorphic subgroups of \(G \) is __________

Q.51 – Q.60 carry two marks each.

Q.51 The value of \(\lim_{n \to \infty} \left(8n - \frac{1}{n} \right)^{\frac{(-1)^n}{n^2}} \) is equal to ________

Q.52 Let \(R \) be the region enclosed by \(x^2 + 4y^2 \geq 1 \) and \(x^2 + y^2 \leq 1 \). Then the value of
\[
\iint_R |xy| \, dx \, dy
\]
is ________

Q.53 Let
\[
M = \begin{bmatrix} \alpha & 1 & 1 \\ 1 & \beta & 1 \\ 1 & 1 & \gamma \end{bmatrix}, \quad \alpha \beta \gamma = 1, \quad \alpha, \beta, \gamma \in \mathbb{R} \quad \text{and} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3.
\]
Then \(Mx = 0 \) has infinitely many solutions if \(\text{trace}(M) \) is ________

Q.54 Let \(C \) be the boundary of the region enclosed by \(y = x^2, \ y = x + 2, \) and \(x = 0 \). Then the value of the line integral
\[
\oint_C (xy - y^2)dx - x^3dy,
\]
where \(C \) is traversed in the counter clockwise direction, is ________
Q.55 Let S be the closed surface forming the boundary of the region V bounded by \(x^2 + y^2 = 3 \), \(z = 0 \), \(z = 6 \). A vector field \(\mathbf{F} \) is defined over V with \(\nabla \cdot \mathbf{F} = 2y + z + 1 \). Then the value of

\[
\frac{1}{\pi} \int_{S} \mathbf{F} \cdot \hat{n} \, ds,
\]

where \(\hat{n} \) is the unit outward drawn normal to the surface \(S \), is ___________.

Q.56 Let \(y(x) \) be the solution of the differential equation

\[
\frac{d^2 y}{dx^2} + 5 \frac{dy}{dx} + 6y = 0, \quad y(0) = 1, \quad \frac{dy}{dx} \Big|_{x=0} = -1.
\]

Then \(y(x) \) attains its maximum value at \(x = \) ____________

Q.57 The value of the double integral

\[
\int_{0}^{\pi} \int_{0}^{x} \sin y \, dy \, dx
\]

is ____________

Q.58 Let \(H \) denote the group of all \(2 \times 2 \) invertible matrices over \(\mathbb{Z}_5 \) under usual matrix multiplication. Then the order of the matrix \(\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \) in \(H \) is ____________

Q.59 Let \(A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 5 & 2 \end{bmatrix} \); \(B = \begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 3 & 1 \end{bmatrix} \). \(N(A) \) the null space of \(A \) and \(R(B) \) the range space of \(B \). Then the dimension of \(N(A) \cap R(B) \) over \(\mathbb{R} \) is ____________

Q.60 The maximum value of \(f(x,y) = x^2 + 2y^2 \) subject to the constraint \(y - x^2 + 1 = 0 \) is ____________
<table>
<thead>
<tr>
<th>Qn. No.</th>
<th>Qn. Type</th>
<th>Key(s)</th>
<th>Mark(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MCQ</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>MCQ</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>MCQ</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>MCQ</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>MCQ</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>MCQ</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>MCQ</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>MCQ</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>MCQ</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>MCQ</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>MCQ</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>MCQ</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>MCQ</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>MCQ</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>MCQ</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>MCQ</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>MCQ</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>MCQ</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>MCQ</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>MCQ</td>
<td>MTA</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>MCQ</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>MCQ</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>MCQ</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>MCQ</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>MCQ</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>MCQ</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>MCQ</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>MCQ</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>MCQ</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>MCQ</td>
<td>MTA</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>MSQ</td>
<td>A;C</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>MSQ</td>
<td>A;D</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td>MSQ</td>
<td>B;D</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>MSQ</td>
<td>B;C;D</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>MSQ</td>
<td>C;D</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>MSQ</td>
<td>A;B</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td>MSQ</td>
<td>A;D</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>MSQ</td>
<td>B;C</td>
<td>2</td>
</tr>
<tr>
<td>39</td>
<td>MSQ</td>
<td>A;C;D</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>MSQ</td>
<td>B;D</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qn. No.</th>
<th>Qn. Type</th>
<th>Key(s)</th>
<th>Mark(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>NAT</td>
<td>0.5:0.5</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>NAT</td>
<td>1.0:1.0</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>NAT</td>
<td>2.0:2.0</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>NAT</td>
<td>8.0:8.0</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>NAT</td>
<td>1.49:1.55</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>NAT</td>
<td>-1:-1</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>NAT</td>
<td>6.0:6.0</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>NAT</td>
<td>0.5:0.5</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>NAT</td>
<td>0.25:0.25</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>NAT</td>
<td>6.0:6.0</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>NAT</td>
<td>1.0:1.0</td>
<td>2</td>
</tr>
<tr>
<td>52</td>
<td>NAT</td>
<td>0.35:0.4</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>NAT</td>
<td>3.0:3.0</td>
<td>2</td>
</tr>
<tr>
<td>54</td>
<td>NAT</td>
<td>0.8:1.9</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>NAT</td>
<td>72.0:72.0</td>
<td>2</td>
</tr>
<tr>
<td>56</td>
<td>NAT</td>
<td>-0.3:-0.25</td>
<td>2</td>
</tr>
<tr>
<td>57</td>
<td>NAT</td>
<td>2.0:2.0</td>
<td>2</td>
</tr>
<tr>
<td>58</td>
<td>NAT</td>
<td>3.0:3.0</td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td>NAT</td>
<td>1.0:1.0</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>NAT</td>
<td>2.0:2.0</td>
<td>2</td>
</tr>
</tbody>
</table>